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ABSTRACT

The courses of sound rays in the atmosphere, depending as they some-

times are on rather erratic temperature and wind distributions, may make

a pattern so intricate as to virtually preclude a mathematical treatment.

The problem becomes better manageabIe with a more orderly distribution

of meteorological parameters such that, in a wedge-like slice of the

atmosphere bounded by two adjacent half-planes through the source vertical,

the state of the gas mixture can be supposed to be steady and independent

of the angle variation in between the planes. The wedge-iike structure

can then be replaced by a representative half-plane, so that the problem

is reduced to two dimensions, both spatial.

The conventional approach assumes that in such a half-plane the

observed distribution of the propagation velocity can be approximated by

a piecewise linear variation with height alone, the simplest case being

where it is linear without break (one-layered atmosphere). It cannot

cope with situations involving a velocity variation with horizontal

distance, as, e.g., may be found over hilly terrain or around the sea-

shore. The bulk of the present report is devoted to developing theoreti-

cal means for computing planar sound ray patterns that evolve from more

general velocity distributions and, conversely, for finding velocity

fields that correspond to a given ray pattern. Several examples of such

interrelationships are given and discussed in some detail. In all these

cases the atmosphere is one-layered in the wider sense that the velocity

field can be described by a single differentiable function of height and

distance. Further work will have to establish in what way such theoreti-

cal fields can be used to approximate actual distributions known from

observation or from suitable data extrapolation.
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SUMMARY

The state of the atmosphere can be considered as aerodynamically

steady with reference to a point source of sound that is embedded in it

at a fixed location (static source). The distribution of temperature

and wind may be such that the sound rays emitted under various angles of

departure in a vertical half-plane in essence won't leave that plane

during their entire course. The fundamental, then two-dimensional,

acoustical eikonal equation becomes amenable to analytic treatment if

(a) the wind speed is horizontal and decidely inferior to the thermo-

dynamic sound speed, and (b) if sound rays of small elevation angles

are considered only (as it usually suffices to do in practice). The

eikonal equation, simplified by force of these assumptions, can be

converted into a differential equation for the ray slope; the latter is

solved in general for arbitratily prescribed distributions of the propa-

gation velocity in the half-plane selected. It is shown that identically

the same ray pattern can issue from a multitude of such distributions.

An inverse method which starts out with a prescribed ray field and

determines velocity fields that would produce it is also developed.

Both methods can be used for a systematic survey of the interdependence

of planar velocity and ray fields, a first step toward practical applica-

tion of the theory. More such relationships can be obtained if the

system of coordinates is rotated about the sound source. A number of

examples employing these methods are given and discussed in more or less

detail. A last section touches on the general question of focal point

formation.

SECTION I. INTRODUCTION

The shell of acoustical energy loosened in an element of time from

a point source of sound can be broken up into infinitely many infinitesi-

mally small fragments associated with the infinitely many directions of



departure from the source. The course followed by any such minute
parcel is defined as a sound ray. The longitudinal vibration contained
in a parcel or pulse is not necessarily in the direction of the ray; it
is so in the absence of wind only. Similarly the keel of a boat is not
in the direction of its movement, seen from ashore, unless it moves in
standing water.

The space around the source can be regarded as filled with a
family of surfaces (wave fronts) on which the phase of the passing
sound vibration is the sameeverywhere while of course it changeswith
time. These fronts, as their namewould suggest, may also be viewed as
the successive locations of the forward phase of all the pulses that
have left the source at the sametime, t o. On arriving at such a sur-
face, their direction of motion, i.e., the direction of the sound rays,
can makeany angle with the surface depending on wind direction and
magnitude.

Atmospheric conditions can be extremely variegated. They will not
only change from spot to spot, but, at the samelocation, with time as
well. If we restrict the considerations to a static source, the temporal
variation with respect to it will, as a rule, be so slow that it can be
disregarded in view of the relatively short activity of the source. The
then locally constant thermodynamicsound speed, i.e., the propagation
velocity in a windless atmosphere, varies with the local temperature and
the molecular weight of the carrier gas. If the atmosphere is considered
as a single gas of constant composition, this speed is given by

J Runi-_vT(°) (I)
c(°) = 7 _

With the usual near-ground composition

co)c _ 20

where c (°) emerges in meters/sec, when the absolute temperature is

measured in degrees Kelvin.

If in such a single-gas, steady-state atmosphere the square of the

wind velocity is negligibly small when compared to the square of the

thermodynamic sound speed, a significant simplification can be made in

that the velocity vector of energy propagation is very nearly identical

with the vector of the phase velocity, _f, normal to the fronts and can

be replaced by it [i]. The sound rays then can be calculated as the

fronts' orthogonal trajectories which, in themselves of little practical

interest, can now be thought of as the traveling routes of energy. The

investigations to follow are based on this concept.

All figures have been computed by James Mabry and have been drawn

up by H. W. Vardaman.



SECTIONII. THETWO-DIMENSIONALEIKONALEQUATION

An access to the problem is opened by the work of Blokhintzev [2].
In his chapter on "ray" acoustics (implying that diffraction processes
are disregarded), he shows that if the argument of the sinusoidal, small-
amplitude sound oscillation is written as _t - ko W, the phase factor W
will obey the acoustical eikonal equation

where

__R__ (2)

q = Co _ _(o). grad W (3)

co = arbitrary referency velocity

(o)
W = vector of wind velocity.

Equation (2) is approximative for sufficiently large values of the wave

number k o .

By definition, the gradient of the phase factor W points into the

direction, _, of the wave front normals, so that

grad W = e Igrad WI'

The relations (2) and (3) then combine to give

C
0

Igrad WI = V-_

where

(4)

v_ = c(°) + n . w (°) (5)

is the absolute value of the wave velocity [i]. In general, the quantities

Vf and W will depend on all three space variables, i.e., in a cylindrical

system, on

x (standing for the customary r)

y (height)

(azimuth).
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Let us take the y-axis as the ground vertical at the sound source. With
a favorable distribution of meteorological parameters, the dependenceon

can be disregarded.

Consider two half-planes joined along the y-axis and separated b¥
the small angle _. If at any two points in these planes, which
are at the sameheight and equally distant from the source, the differ-
ences in meteorological data are of order (x_) 2 rather than of order
(x_), and if this is true for all the half-planes in between, then the
data will depend on x and y alone (in the first approximation); the
wedge-like spatial sector can be taken as part of a substitute atmosphere
where this is universally true and where therefore the wave fronts are
symmetric about the y-axis.* In these circumstances, equation (4) can
be reduced to two dimensions, since the dependencyon the azimuth can be
dropped. It may be written as

2 2

(6)

The sound rays, in general of double curvature, are now confined to a
representative half-plane in which the sound propagation is being investi-
gated. The variable x, originally the radius-vector in a cylindrical
system, is essentially positive. The ordinate y should be permitted to
take on negative values as well, since mathematically the half-plane is
not bounded in the downwarddirection and physically the sound source
could be located above ground level.

The surfaces of constant phase appear as curved lines in the half-
plane considered. Their normals are tangents to the sound rays [if
w(°) << c(°)] and can therefore be written as

n = i I cos e + i2 sin e

where e is the local angle of ray elevation. The componentin the
azimuthal direction (i3) is zero. If uij u2_ u3 are the componentsof
the wind vector w(°) in the three spatial directions, it follows that

n • w(°) = uI cos 0 + u2 sin O.

The componentu3 has no bearing on the two-dimensional problem, since
• _(o) is the projection of _(o) on the direction _ and is therefore

not affected by the azimuthal componentwhich is normal to _.

*This condition prevails if, for example, temperature and wind
vary with height alone, or nearly do so.



The vertical component, u2, is hard to observe and is often quite
small so that it is taken as zero by manyauthors, e.g., in references
i, 2, 3, 4, 5. This simplification will be adopted in the present paper.
(As a consequence, the treatment is not applicable where strong vertical
currents are suspected or shownto exist.) Furthermore, in accordance
with references i, 3, and 4, only low-lying rays with small angles of
elevation will be considered so that cos @remains close to unity. This
further simplification is often permissible in practical applications.
In view of the earlier restriction requiring the wind speed to be much
smaller than the sound speed, relation (5) may then be written as

Vf = c(°) + ul.

The acoustical propagation speed appears as the algebraic sumof the
thermodynamicspeed and the componentof the horizontal wind vector in
the selected half-plane. A very considerable mathematical advantage is
gained with this: The right side of equation (6) can now be considered
a given function of x and y while so far it had dependedon the unknown
quantity n.

SECTIONIII. PLANARSOUNDRAYSANDWAVEFRONTSIN GENERAL

The solution sought to equation (6) does not have to satisfy ordinary
initial value conditions. The aim is not to determine a particular inte-
gral surface that, on a certain (non-characteristic) curve prescribed in
it, should be sloping in a prescribed way. The situation is quite dif-
ferent. As evidenced by the presence of the arbitrary reference velocity
Co in equation (6), the W-values themselves are not essential in the
problem; neither are the values of the first partial derivatives. Rather,
since W= const, is the equation of the curves of constant phase, the
interest centers about the quotient of the derivatives, as

_W _W
dy-- 0

is the differential equation of these curves.

be written as

(7)

That of the sound rays may

W

a_z= ._z (8)
dx W

x

where the subscripts y and x indicate partial derivation with respect to

these variables.



The sound source, which will be located at the origin, is a singular

point since all the rays take their departure from it. In terms of x

and y the quotient on the right side of equation (8) must therefore be

indeterminate at the origin• This cannot be accomplished by setting

Wy = Wx = 0 at the origin. Such a condition could not be satisfied by
any solution of the differential equation (6), since its right side is

a finite quantity unless the propagation velocity at the sound source

V° = Vf(0, 0)

is infinite, which it is not. The only other alternative is to require

one of the partial derivatives to be indeterminate. The other one then

is necessarily also indeterminate, since the sun of their squares is to

have the determinate value

O"

The problem on hand can then be formulated as foiiows: Find a

solution to equation (6) such that the partial derivative Wx (or Wy)
remains indeterminate at the sound source. It is clear that with this

single stipulation the solution cannot be unique. Uniqueness is required

only as far as the ratio of the first-order partial derivatives is con-

cerned which, by equation (8), defines the slope of the sound rays. If
it is viewed as an equation for W, no further requirements as to initial

values are inherent in the problem. However, it will be expected that

the solution properly furnishes curves of constant phase and the sound

rays. The above stipulation was prompted by a physical condition imposed

by the latter, while the wave fronts are merely the orthogonal trajectories

of the rays.

Such a solution has been given in reference i for the velocity

distribution

= + BY (9)Vf V°

where _ (either > 0 or < 0) is the constant gradient of Vf in the

y-direction. It is the purpose of the present paper to attack the

problem when more general distributions are prescribed.

From the earlier work, some advantage can be foreseen when dimension-

less quantities are introduced by the transformations

H

_ = i + _o y = i + _y

_=_x

_=_w

Vf
V = --

Vo "

(IO)



In a general case, _ will be related to the y-component of grad Vf,

taken at the source. (In the special field (9) the constant _ is the

gradient of Vf everywhere.) It follows that the constant % may have a

positive or a negative value, making _ either always positive or always

negative (for x > 0). For the distribution (9), v = N.

Relations (i0) transform equation (6) into

2

+ =7'
(ii)

if c o is put equal to Vo, which we are free to do. The method employed

in reference 1 for obtaining th_ solution to equation (II) when v =

does not lend itself to easy generalization. A more systematic manner

of handling the problem would make use of the characteristic equations

associated with partial differential relationships. The dimensionless

velocity can then be prescribed as an arbitrary positive function of

and _, restricted only by the condition that v = 1 at the sound

source which, if located at the origin of the (x, y)-system, by trans-

formation (i0) has the dimensionless coordinates _ = O, _ = i.

There is no real interest in determining the function _ itself. It

appears more appropriate to deal with a differential equation in which,

e.g., the slope, s, of the sound rays is the unknown function. Such an

equation can be developed from equation (II); contrary to (ii), it will

be quasi-linear, which makes it even more attractive.

The slope s = =z- obeys the equation (8). If subjected to the trans-
dx

formation (I0) it reads

With the aid of the differential equation (ii) both _ and _N can be
expressed in terms of s:

1 1

v  s2÷f

_i] -- + l I S2 '-v

where the quantity v is positive and the square roots are taken as absolute.



The condition _N = _ requires that

1 i

-+ 6_v-- WCs2 + I'

= +
1 ,s 2 '

,/;w-z-i+1

The double sign at the left refers to the signs of _, that at the right

to those of _ If both _ and _ are positive or both negative, s will

be a positive quantity; ot6erwise, s will be negative. It follows that

it is advisable to affix a sign to the square root of s 2 in putting

_---- S

rather than

 :Isl

since the double signs then cancel out. With this proyision the cross-

derivative relation goes into

s_ + as] v
(12)

In terms of a parameter, p, the associated characteristic equations

for the three independent variables _3 _ s may be written as

d--rl= vs (13)
dp

d s = (s e + i) (s v_
%.dp - v i).

Any integral of the system (13) is also an integral of equation (12).

Moreover, since (12) is quasi-linear, any two integrals _l (_, N, s) and

_2 (_, N, s) of the system give rise to a quite general integral

= n (_, _2)

where _ is an arbitrary differentiable function. This theorem is important

in our context; it will enable us to find an integral such that s remains

indeterminate at _ = O, _ = i. It will be shown that, if the relationship



= const, of 41 and 42 is written as

(14)

the still arbitrary function G can be specialized in such a way that
the above condition is satisfied. Consider the values of the known
integrals 4i and 42 at the sound source:

41 = _i(O, I, s).

t'2 = _2(0, L, s).

Here the variable s can be eliminated to give

}i = H(_2) = f(s) (15)

where H is a known function. In putting

G-H

two things will be accomplished. On the one hand, it will be impossible

to compute the value s at _ = O, N = I, since equation (14) will degener-

ate into the identity f = f; hence, s remains indeterminate at the sound

source. On the other hand, the solution will be unique, as there is only

one function H that relates _2 to _i at the sound source.* Thus, the

general problem is solved in principle. For any prescribed v-distribution,

it is reduced to finding two integrals of the system (13). To be sure,

*If a pair of different integrals, _i' and _2', give rise to the rela-

t ion

(_) $_' : H'(%')

we can introduce 4i' = _i(4i, _), _2' = _2(_i, 42) and solve the ensuing

equation for @I:

(b) 41 = H*($,a).

If equation (a) reduces to an identity at the source, equation (b) must

do likewise, so that _" = H. The function s' = s'({, D) that becomes

indeterminate at the source by virtue of equation (a) will be carried

through the 9-transformations into equation (b) and then must be

identical with the function s = s(_, D) which would issue from 41 = H(92).
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those integrals must be independent of each other lest relation (15)

become an identity, too. In other words, the matrix

must be of rank 2 so that at least one of the two-rowed determinants

contained in it is not identically zero in the domain where the _'s are

defined. If two such integrals are known, the solution s = g(_, N) can

be obtained from equation (14) using G = H (although this may meet with

algebraic difficulties). The sound rays and wave fronts finally are

described by the differential equations

d_._= s and d__ = _ ! • (16)
d_ d_ s

The integration constant, C*, of the former is to define an individual

sound ray which, however, grows into a separate entity only after it has

left the source. There is no distinction between rays at the sound

source itself so that in the solution the integration constant will

always be tied to a linear function that vanishes at _ = 0, N = i. Its

derivative, must not and does not vanish there; for if the solution is

differentiated with respect to _, it must be feasible to determine C*

from the equation

(17)

in putting

g(0, i, C*) = tan 80 (18)

since the initial angle, 8o, of elevation is the discerning element for

rays.

It may seem unnecessary to also obtain the integral, X(_, _), of

the second equation (16). After all, the immediate interest is in the

sound ray pattern as prompted by a prescribed velocity distribution

v(_, _). However, a curious and far-reaching application can be made of

the wave front integral.
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Since X(_, N) = C is the equation of the family of wave fronts,
their slopes maybe written as

dR= _ i= ×_

s

so that

- sX_ = O, (19)

where s is the sound ray slope as obtained from the basic differential

equation (12) on the strength of a given velocity distribution v(_, N).

Consider now the velocity distribution

v = v F(X) (20)

where F is any positive differentiable function of X restricted only to

F = 1 at the source. Let F' denote its derivative. The sound ray slope,

_, pertaining to v obeys the equation (12) which may be written as

+ (%2 + 1) _-_ _ = _-- (y _×_) (_2 + i).

The left side here is zero if one puts _ = s; so is the right side

according to relation (19). Hence, § = s is the required solution, since
s is indeterminate at the source. In view of the equations (16), the

distributions v and V then result in the same families of sound rays and

wave fronts, the only difference being that the rays and fronts move at

a different rate. If the solution is found for a certain distribution

v, it is also found for infinitely many other distributions, V = v F(X),

since F is a quite arbitrary function.

This remarkable fact can be demonstrated in a heuristic manner.

Consider two wave fronts, C and C, as given by the two wave velocity

distributions v and _. Suppose they coincide, so that along the common

front the velocity _ = v F(C) is a constant multiple of the velocity v.

Their directions are identical at any given point of the common front,

since both are normal to it. The sound excitation will travel in this

direction, and it will travel the same infinitesimal orthogonal distance,

ds, from a given point, if the constant time differentials dt and _ I-- dt

are allocated to the respective motions. Hence, two adjacent fron_U_ill

coincide, and so will the wave front patterns in toto, if the process is

continued. The argument is clinched by the observation that there is

always one common front (of enclosed area zero) at the sound source.
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However, it would break down if the function X = C where to be replaced
by a function not constant on the wave fronts C, since the term "adjacent"
implies constant infinitesimal travel time. The significance of the
integral X can thus be understood by the physical process itself.

From the foregoing theorem it seemsreasonable to start more detailed
investigations with relatively simple velocity distributions. If, e.g.,
v is taken as dependent on height alone:

v = v(N), (21)

the second and third of the characteristic equations (13) may be combined
into a differential equation with separated variables:

ds s2 + I dv

dN vs dR

yielding the integral

_i = ve(s 2 + i). (22)

The necessary second integral cannot be written in an explicit form. From

the first two equations (13) and from relation (22)

so that

= = V _
d-i l + i v '
d_ s - 1

_e = _ $ /_/ vdrl--- •
O 4 - ve'

(23)

It should be kept in mind that the upper sign here is true if s > 0, and

vice versa.

A second integral may sometimes be obtained with less effort when the

first and last of the characteristic equations are used:

v
ds= - (s2 + i) _/I (23A)
d_ v "
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This approach is preferable when, on consulting the integral (22), the
quotient v_ as it is given by the prescribed velocity field appears as

v

a simple relation in _z and s.

Two cases in which the integral in relation (23) or (23A) is easily
1

evaluated will be treated in detail, namely v = _ and v _._ In
general, all distributions in which v_ is a rational function of v offerv

no difficulties; the quadrature can then be carried out with elementary

functions. Another instance when this can be done is the distribution

v = el - _ which is taken up in Section VIII.

SECTION IV. THE VELOCITY DISTRIBUTION v =

AND DISTRIBUTIONS DERIVED FROM IT

The case v = _ has been discussed in reference I. It will be

approached here from the standpoint of the general theory set forth

above, and the treatment will be extended to distributions _ = NF(X)

which had not been considered in reference i.

The integral (23) yields

Since, by (22),

_I = 02 (s2 + l)

it follows that

¢2 = _ ± $_2 s_'.

Non-negative values of _ are admitted only, since v _ O. Therefore

_ = _ + _s

where the double sign is taken care of by s.

The functions _l and _2 are independent of each other. At

_=0,_=i

__ = _+ 1 : s_ + 1

so that in relation (15) H = _ + 1, f = s 2 + 1. According to relation (14)
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the proper expression for s is then found from

_2(s2 + I) = (_ + ms)2 + i,

as G m H. This yields

s = _2 _ _e _ i
2_ m (24)

which expression is indeterminate at _ = O, N = I as it ought to be.

The differential equations (16) give the families of sound rays

and of wave fronts in the form

_2 _ C* _ + Ne = i

(with C* = 2 tan eo) and

(25)

c = _2 + _e + 1
2m . (26)

The sound rays are circles with a common point of intersection at

the sound source. The wave fronts are likewise circles, all strung

along the m-axis with different radii, but in such a manner that no

points with _ < 0 appear (Fig. i). C is therefore a positive constant

(varying from +I to + _). The sound excitation cannot penetrate into

the region m < O. As an inference, no ray can reach the axis _ = 0

before an infinite time has elapsed (although, mathematically, the ray

circles do continue into the region below). Indeed, v = 0 at _ = O.

Other parts of the circles will be traced by the rays if modified

velocity distributions are considered. As an example, take _ = const.
and

so that

i2 + me + 1
X + _ with X = (27)
i +_ 2m

_2+ (_+_)2_(oF_ i)
= 2(1 + _) = _ +

_2 + (_ _ 1)2
2(1 + _) " (28)
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FIG. i: WAVE FRONTS AND SOUND RAYS WITH v =
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The wave velocity then is constant on circles with center coordi-

nates Gm = O, _m = -_, whereas with v = N, it had been constant on the

parallels to the G-axis. The propagation velocity Vf = c(O) + uI cannot

be negative unless the wind component is negative and its magnitude is

larger than that of the thermodynamic sound speed. This will never

happen near ground and, besides, is outside the scope of the present

investigations which require that

I if<< c(°).

The dimensionless velocity q = Vf/Vo is therefore not negative so that

from the possible values for _ the region _ N -I is preferably (though

not necessarily) excluded. As also shown by expression (28), the

ordinate N now may assume negative values, provided that G2 is sufficiently

large. There will be physically meaningful points below the L-axis, which

in the case v = N, could not be crossed by rays (Fig. 2a). They belong

to wave fronts characterized by C < -i.

It is obvious from expression (28) that the region _ > -i separates

into two sub-regions I_l < I and _ > I. The latter includes the case

v = N, if _ = =. For very large values of _ the velocity is constant on

very flat circular arcs.

A. 0_>i

This case, especially with a rather large Value of _, is probably

more often nearly realized in practice than is the case I_I < i. The

velocity q is zero on the circles

G2 + (n + cO 2 = o_ - i (29)

which include the degenerate circle N = 0 for _ = m. For any other

specified value, the interior of the circle (29) is, as it were, a

forbidden region; the rays arrive at the circumference no sooner than

at time infinity. All the ordinates N in (29) are negative so that

the bounding circle expands completely underneath the G-axis, its

center being on the N-axis (Fig. 2a). The region outside the circle is

filled with rays (unless there are material obstacles). It is now more

clearly seen that the sound field extends to ordinates N < O. The

physically meaningful arcs of the ray circles are longer than in the

case v = N. They end at a point of the circle (29) whose abscissa is

still positive. It will be noted from equation (26) that the circle,

equation (29), is the wave front characterized by C = -C_.
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B. _= 1

The circle (29) reduces to the point _ = 0, N = -i. All rays

converge into this mirror image of the sound source, since the dependency
on C" in equation (25) vanishes at _ = 0. They arrive and end there at

time infinity.

c < I

Since, by expression (28), the propagation velocity _ is never zero

here, the motion could conceivably carry on to the left of the N-axis.

However, the rays would then leave their allotted half-plane. The axis

= 0 is a natural boundary imposed by the atmospheric conditions that

permit the two-dimensional treatment. The rays, arriving at the mirrored

source (anti-source) with finite velocity, will continue their courses

as dictated by the meteorological conditions they encounter in the

opposite half-plane, that is, on curves almost always different from

the circles they had been following so far. In the rare event that the

state of the atmosphere is oppositely equal in opposite half-planes,

the rays will circle back to the original sound source guided now by a

system of wave fronts that originates at its mirror image and is perti-

nent to the left half-plane only, just as the first system's physical

significance had been confined to the right half-plane. Thus, if a

ray goes full cycle one should keep in mind that the unbroken circle it

seemingly describes is actually split by the N-axis, into two arcs

originating at different sources.

The foregoing qualitative description can be supported quantitatively.

Let the transformations (i0) be supplemented through introducing the

dimensionless time variable

T = % vo t. (30)

We wish to obtain the equations _ = _(_) and N = _(_) for a single ray.

As a preliminary step the relation X = X(_) will be derived. The guid-

ing idea here is to consider all the pulses leaving the source at T = 0

and to find out at which time T they will have arrived at the wave front

C = X = _2 + _2 + I
2N

Since the front _ = 0 is characterized by C = ±_, a case distinction

for N _ 0 becomes necessary. Above the _-axis the wave front constants

C are positive; below it, they are negative.
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With the aid of the ray slope (24) the time variation of X along

a ray, i.e., along a curved wave front normal, can be put into the form

d__XX= X 2 - I d R

dT _] d_

k e 1 ~ X e - i X +
v cos @ -

_ _ i+_
COS 0.

But cos 0 is positive for q > 0 (0 in first or fourth quadrant) and

negative for q < O. Hence_

cos 0 =+ i =+

f

so that

d× + ×+ (_ _/_2 i'
d--_= - i +------_ - . (31)

It is seen that, as the pulses set out from the initial (zero) wave

front (X = C = i) they will meet with fronts characterized by ever

increasing values of C as long as q > 0 (upper sign); this will remain

true after q has become negative and the value of C has switched from

+_ to -_, because the right side in equation (31) will still be

positive until the value X = -_ is reached. But then, _ = 0, and

indeed this front is the bounding circle (29) at which the courses

of all rays end, if _ > i. Since l_I is always _ i (as can be seen

from the values on the q-axis where they are smallest), such a stoppage

cannot occur in a case l_I < 1 where in fact, as was pointed out before,

the bounding circle does not exist and the rays all converge into the

anti-source.

Equation (31) can be integrated with the use of the substitution

k = _Q_C__ d X = c_ - i
(7 - Q ' dQ (c_ - Q)2 • (32)

If _ > i, Q increases as X does so, beginning with Q = I for X = i,

arriving at Q = _ for X = ±_. With larger values of Q the denominator

- Q becomes negative while the numerator is always positive. Hence

the square root

± J x - i)'

_-Q
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is negative for'negative values of X and N, as it ought to be.

Equation (31) then assumes the form

5.- i d_= dq _
4Q i'

and is solved by

so that

Q = cosh _T, where _

c_ cosh _ - ! for (_> i.
C_- cosh _

(33)

Evidently, X = -_ for T =

In the case I_I < i a similar reasoning leads to the equation

_d-r : --
dQ

z

which is solved by

Then

Q = cos 7"r, where 9' =

X- i - q cos 7"r for I_l < i
cos 7"r - _

Interesting values here are:

X = i for • = O,

X = +_co for cos 7_ = (_,

X = -i for • = _.

(34)
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The last value indicates the time at which the rays reassemble at the
anti-source (since X = -I there). It is infinite with _ = i. However,
this appears as accidental, since the substitution (32) is prohibited
if a = I. Direct integration of equation (31) here yields

4 + _e
X = 7-------_T (35)

with X = i at T = 0, X = ±_ at T = 2, X = -i at _ = _. The simplicity
of this result is probably connected with the fact that, with _ = i, the
circles of constant velocity are centered at the mirror image of the
sound source.

The time history of a single ray is now obtainable from equations
(25) and (26), as C _ X. If the quantity

= +-Q Xe - I' (36)

is introduced, with the upper sign holding for N > 0, the solutions for

and N may be written as

i _o co s 80

X - co sin @o

1

X - 0o sin 8o

(37)

The dependency of X on time is given in expressions (33), (34), and (35),

while that of _ emerges as

4"e2 1_
- sinh _T if _ > I

- cosh _T '

4 1 - O_'sin 7, if Iffl < i (38)
cos 7T - _ '

4_

_, ifCZ= I.

In the degenerate simple case _ = _ (9 = q = v)

_ cos eO sinh T
cosh T - sin eo sinh

i

' _ = cosh T - sin _o sinh
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These latter expressions had also been obtained in reference (i), where
they appear as the set (25). Relations (37) show quantitatively the
effect of an _-value _ _ on a pulse's course along its circular path.
In the upper quarter-plane the pulses will nowmove faster since they
spend only a finite time above the _-axis. By the second equation (37),
the time, _*, of arrival at _ = 0 is associated with _ = _, or Q = _,
so that

_* = _cosh "I (_, if C_> i

_* = _ cos c_, if IC_l< i

•* = 2, if _ = i (from (35)).

It can be shownthat _* keeps decreasing with decreasing values of 5,
so that the pulse motion grows faster and faster whenone proceeds from

= _ toward _ = -I. This is what one may expect from the expression
chosen for _ which contains the denominator (i + _). Since there is a
physical limit to the propagation velocity of sound waves, small values
of _will not often occur in practice. It will be recalled that the
dimensionless velocity v was defined as the ratio Vf/Vo and therefore
will never be far from unity in a reasonably close neighborhood of the
source. Since _ _ I for not too large values of IYl (the quantity
being very small, say of order i0 _s m'_), it follows from the definitions
(I0) and (289 that

x2 + y2 10.i 0
_ i + 2(1 + _)

where, with the low-lying rays alone considered, the y2-term can be

neglected for sufficiently large values of x. A 2% change (_6°C) in

absolute temperature corresponds roughly to a 1% change in 9. (See

Formula (i).) Suppose this has been observed at I00 km horizontal

distance from the source; then _ _ 50. If it was recorded at 30 km,

_ 4; if at I0 km, _ _ -0.5. These figures presuppose that the

velocity distribution as observed at many points can be approximated by

the form (28). If this is not feasible, a function F better adapted to

the observational evidence must be sought. To work out a rational

method for doing this must be relegated to later investigations, as

must the practical aspects in general. It may be difficult to arrive

even at an approximate representation of this type, since a different

basic situation will evolve when the distribution v = _'½ is discussed

in the next section.
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It will have been noted that in the foregoing _ had been taken as

a positive quantity, the families of dimensionless wave fronts and ray

curves reflecting physical reality in the right half-plane only. If

the sound source is sitting on flat ground, all its rays will then

return to ground level (_ = I). This seems to exclude a wide realm of

conditions where in fact they do not.

The physical distance x, originally a radius vector, is always

positive, but, according to the transformation (i0), the quantity _ is

so only with % > 0. With _ < 0, _ is always negative. So is the

dimensionless time 4, by the transformation (30). This suggests to

substitute for _ and T the quantities _' = -_ and T' = -T which then

are always positive. The mathematical formulations remain unchanged

in essence if in addition the substitutions N' = -N, v' = -v are made;

v' = _' is then positive for N' > 0 as v = _ had been for N > 0. How-

ever, the sound source is now located at _' = 0, _' = -I and thus has

exchanged positions with the anti-source. Hence, rays emitted with

positive elevation will never return to the source level N' = -i

(Fig. 2b). In the case v' = N' they will all end at N' = 0, so that

an observer in a balloon ranging above that line will not be aware of

the presence of the source. (With % > 0 he would notice it no matter

how high he soared, being equipped with supersensitive receivers.) In

the substitution (27) X = C will change signs so that the family of

wave fronts is now numbered differently, positive constants being below

the _'-axis, negative constants above it. With the distribution _'

active, the observer would always register sound signals unless by an

unhappy chance he drifted into the bounding circle which, if existing,

is now completely above the axis D' = 0 (Fig. 2b). By equation (25)

any ray with angle of departure 8o at the original source will coincide

with a ray leaving the anti-source with elevation @4 = "@o- An

initially downward course is converted into an initially upward course,

and vice versa.

SECTION V. VELOCITY DISTRIBUTION v = I/_-_

The field v = D includes velocities not realizable physically

(those near N = 0 and _ = _). The same is true with the distribution

1
v = _ (39)

although it might be somewhat closer to actual atmospheric conditions

as v _ 0 if N _ _. Also, the point where v becomes infinite is often

buried in the ground underneath the source and is then without physical

meaning.
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From the integral (22)

i
_i = _ (s2 + i)

the quotient

v_/v = -

so that the differential equation (23A) goes into

d___= ___
d_ 2

yielding the second integral

At the source

_l = s2 + i = 422 + I.

The required solution for s is then found from relation (14), i.e., from

se+l = s _ +i
2_

which equation resolves into

24 +_4 44 - _2,
s = _ . (40)

This is the slope of the sound rays answering the distribution (39). It

is indefinite at the source, if the negative sign applies. On integrating,

$_4_ - _2_= 2 + _ tan eo (41)

where a ray is characterized by its angle, eo, of departure at the source.
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These curves are the parabolas

(_ + sin 280)2 = 4 cos2 8o (N - cos

so that the slope (40) mayalso be written as

2 eo),

N, _ + sin 280 (40A)
- 2 cos _ eo "

There is a limiting parabola, P*, which does not belong to the ray

family and is given by the equation

4_ - _2 = 0. (42)

Outside this parabola no sound is heard. On it, the ray slope is

s=i
2

and is thus identical with the slope of P* itself. The limiting para-

bola is the envelope of ray curves which, after grazing it, recede into

the interior from which they had arrived (Fig. 3). At the point of

contact a "second branch" of a ray parabola begins which does not pass

through the sound source and is bound up with the upper signs in

expressions,(40) and (41). The contact point's abscissa (_c = -2 cotg 8o)

is positive with 8o < 0; hence, rays that point upward when leaving the

source do not touch the limiting parabola at all and have no second branch.

The equation of the wave fronts

d__= -_

has the integral

4(1 + q3) + 3(1 + B) _2 + (4N - _2)3/2 = C.

Second branches (upper sign) exist for C > 4 only. Their physically

real parts begin on the B-axis and end on the parabola P*; they are

orthogonal to sound rays receding from P* after contact. Meaningful

first branches exist for all values in the range C _ 0. (a) If C _ 4

they are closed curves about the sound source whose relevant parts are
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orthogonal to the first branches of the sound rays. (b) If C > 4 they

stretch from the R-axis to the limiting parabola where they join the

(then existing) second branch in a cusp. They complete the family of

orthogonal trajectories for rays with positive initial angle of elevation.

While the wave fronts make a somewhat complex pattern (Fig. 3), the

sound rays do not. Also, parabolas are among the simplest geometric

curves, often more easily handled than circles. Present practical

applications are mostly built on the distribution v = D that results in

circular rays. It should be worthwhile to look into the question whether

the field v = I/_where the rays are parabolas would offer advantages

in the practical evaluation of layered atmospheres. At the moment it

may merely be pointed out that if B is taken as negative, i.e., if the

propagation velocity

V o

I + y

increases with height, a focal point on the source level always exists,

while, with the fundamental field v = _ (one-layered atmosphere), a focus

cannot arise. The rays intersect with the source horizontal N = i at
the abscissas

Vo 2Vo

x s = -- i s = - -- sin 2@0

so that x s is indeed positive for _ < 0 (Fig. 4).

.A focal point is defined by the condition

dx
s

---- 0
d@o

and is thus associated with the angle of departure

90 = _o _ - 4 '

its abscissa being

2V o

xf = - --
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It will be noted that the limiting parabola

+ y) V_oo x 2

intersects with the axis y = 0 at the focus.

SECTION VI. HYPERBOLIC AND ELLIPTIC RAYS .

THE INVERSE METHOD

Circles and parabolas depend on essentially one parameter; the two-

parameter ellipses and hyperbolas can be expected to be associated with

velocity fields containing one arbitrary constant more. One is, however,

hard laid up in divining distributions that would send the rays on

elliptic or hyperbolic trajectories. The inverse course suggests itself

here: given a ray pattern, find an appropriate velocity distribution.

It was shown in Section III that the distributions v and _ = v F(X) are

equivalent, so that an infinite variety of such fields exists.

The basic differential equation (ii) is in fact the non-dimensional

planar eikonal equation and is therefore satisfied by an integral

= _(X), as X = const, is the equation of the wave fronts. The square

of the desired velocity may then be written as

v 2 = _ (43)

where the otherwise arbitrary positive function f must be chosen such

that v = i at _ = O, N = I, which is the condition for v at the source•

The function X is the integral of the wave front equation (16);

d_jl= _i

d_ s

For simplicity take the axes of the conic section as parallel to the

coordinate axes. The general equation

_2 + 2a_ + k (_ - 1) 2 + 2b (_ i) = 0

contains the coefficient k which is positive or negative for ellipses or

hyperbolas, respectively. The slope, tan eo, at the source and the

constants a and b are related by

a + b tan eo = 0 (44)
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so that

_e + k (B - i)e + 2b (_ - i)

2b tan eo =

The differential equation of the ray family is found by removing tan 6o

through differentiating this equation with respect to _. The result

contains the slope s, _rom which the equation of the wave fronts is

found as

d_ " s : _ k(N - i)_ - 2b(q I) •
(45)

This equation is linear in the variable u = _2; it is readily solved to

give

_.e _ k(q - 1) 2 - 2b(_ - i) +

[k(q - i) + b]Z/k

2k - i

2 [k(_ - i) + b]
2k - I

=K.

(46)

The case

2k- i :0

is not included in the general expression (46); the solution then

exhibits a term log (_ - I + 2b). With k = 0 the ray field is para-

bolic, and the formulas of Section V can be rederived on putting

b : -2 cos 2 Co; it can also be shown that the simplest possible velocity

field is then v = q'½. If k = b = i, circular fields and the distribu-

tion v = _ arise. Taking a clue from the latter case we may simplify

equation (46) by requiring that

i

b = k (_ _, # 0). (47)

With this, the equation (46) goes into

i i

{ }k k Na + k : Kk k 2X. (48)q _2 + 2k - I

The factor 2 is included in order to have complete agreement with

expression (26) in the case where k = I. The source, being a wave front

of infinitesimally small enclosed area, is characterized by the constant

2ke (49)
2)(o : 2k - I "
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Wavefronts close to it are always associated with larger constants, as
can be seen by a series expansion in terms of _ = I + E and c = i/k.
It is found that

2(X - Xo) = (i + e)"c 2 + ¢2 + 2e3 c3f__+ 2e4 (c - i) (c - 3) }4_ + O(eS)

(50)

This difference is positive if e is small enough. Likewise, the

denominator in expression (43) for v 2 can be written as

X_2 + Xq 2

i 1

- 4 2c + 2
q

[(_2 . i - c_2) 2 + 4_ 2 _2] =

1

2c+2
q

_2 + + e[_2 (2 - c) + e2] + _ + e2( _2 + -T-)
4

(51)

where the result (48) has been used. It is then seen that if we put

f(X) : 2(X - Xo)

the expression

_2 + 1 _2 + i 2 c
c + 2 2----'-7 c c(2 - c) "1

v e = 4q (q2 - l - c_2) 2 + 4_ 2 _2 (52)

takes the required value v 2 = 1 at the source. Since in

q = i +_E_y
Vo

the constant B is of order 10-2 or less and since low-flung rays are

only of interest (y/Vo < i0°), e will be of order I0 -I or less; in these

circumstances, expression (52) may be approximated by

v 2 _ (i + e) c + 2 _2 4- E 2

_e + E2 + _ + 2 - C C _2 (2 + e)
- 4 2

(52A)
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At the source level (c = O)

2= 4 2= 4 2
Vf 4 + cm _m V° 4 + c2 %m x'2 V° "

Hence, if the velocity slowly decreases in x-direction the sound rays

may possibly be elliptic or hyperbolic. It was shown in Section IV that

if it slowly increases, a distribution of the form

_2+ (q _ i)2
= N + 2(1 + _)

may be more appropriate, with which the sound rays are circles.

The inverse method can be applied to any ray pattern one cares to

prescribe. It has the advantage that it requires the finding of the

integral X only, whereas the direct method calls for the solution of

the system (13) with subsequent integration of equations (16). For a

systematic correlation of velocity and ray fields both are equally

applicable. The former may be found to have a slight edge on account

of its greater simplicity. On the other hand, simple _-dependent

velocity distributions are best studied with the direct method; more

complicated fields depending both on N and _ and yielding the same ray

pattern can then be set up in the manner indicated in Section III. To

be sure, the underlying principle applies also to velocity fields obtained

by the inverse method; these, however, are apt to be complicated in them-

selves, as the example (52) shows, and multiplication by some function

F(X) will in general add to the complexity. One notable exemption to

this rule emerges when the expression (52) is applied to circular rays

(c = i) where

_2 + N2 + i - 2N
v2 = 4N3 (Nm - i - _m)m + 4_ m Nm

and, by (48)

X = _2 + q2 + 1
2_

so that

V2= _--_--.

X+I

The result, on choosing F2(X) X + 1= 2 , simplifies into the distribution

= N, which is the basic distribution for circular rays.
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With c = - i tile rays are equilateral hyperbolas (Fig. 5). From
expression (52)

v2 4 (_ - i_ (_ + 2) + 3N _2
= _ (_ + _ - l) + 4__ _ "

A similar rearrangement with the aid of

I .q2_ I)2X= _ (_2 +7

is not feasible here. There is a "bounding" wave front along which

v = 0. However, the rays are turned away before they come near it; it

is therefore not indicated on Figure 5.

The bounding front is a true barrier for the sound propagation in

the case of elliptic rays. Take c = 3 as an example (Fig. 6). Then

,_2 _ ..Q2 + 1/3
X-

2_ _

and

2 4 q5 (q - i)e (2_ + i) + 3_ 2
v = _ (_ - i - 3_) m + 4_ _ qm "

Again, a simple_ velocity field bringing forth these rays is not likely

to exist. The bounding wave front is defined by _ = 0. The curve

(q 1) 2 (2q + i) + 3_ 2 = 0

1
where v = O, too, lies below the line q = - _ and is without physical

meaning: _ince the rays cannot proceed beyon_ the line _ = @.

The restriction (47) (b = k) can be removed. Also, it is not

necessary to take the quantities b and k as constants; they may depend

on eo. In the latter case, the relations (45) and (46) are no longer

applicable, and the expression for the wave front integral must be

worked out according to the dependency as prescribed. The ray field

may contain all types of conic sections (e.g., with a = - tan 9o,

b = i, k = tan @o). However, novel results of a general nature have

not been found in the examples so far dealt with.
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Finally, the rays can be assumed as conic sections with axes not

parallel to the axes of coordinates. A rather simple velocity field
arises if the ray equation is taken as

_m- N2 + i + 2_N tan eo = O. (53)

These curves (Fig. 7) are hyperbolas whose axes are turned by 1/2 8o

and have the common length 2 _-_o. The center is always at the origin

(_ = N = 0), the asymptotic lines being given by

cos 8o = _ (sin Go ± i).

On eliminating tan 8o from equation (53) the ray slope is obtained as

_2 + We _ i

d_ s = _ + + i_

The wave front equation

d_ s

has the integral

(a) X = (_2 + N2 _ i)2 + 4_2

which may also be put into the form

(b) X = (_2 + Ne + 1)2 _ 4_e .

From (_) and (b), respectively

X = 4_ $ X - 4_e'

X_ = 4_ J'X + 4_ _,

so that

X 2 + y_q2 = 16X (_2 + _2).
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If in relation (43) the function f(X) is taken as 16X, the velocity field

(54)
v = $_e + _2_

is seen to give rise to the ray pattern (53). The transformation (i0)
shows that, in the physical plane, the velocity may be written as

Vf =
Vo

SZ e xe + (i +hy)e

and, since h is very small, never deviates much from Vo in a reasonably

close neighborhood of the sound source (as it should not, if an actual

meteorological situation is to be approached by it). It is constant
on the circles

x2 + + y = eonst.

whose co.mnon center is far out on the y-axis, as Vo/_ is a very large

ratio in terms of tens of kilometers. Near the sound source the velocity

associated with the ray field (53) is therefore constant on circular

arcs that are almost straight lines parallel to the x-axis. There is

no bounding wave front, as v becomes zero only with _ _ _ or N _ _ .

SECTION VII. ROTATION OF THE COORDINATE SYSTEM

It has been shown in Section III that, once the ray problem is

solved for a given velocity distribution v, it is also solved for all

velocity fields that can be written as

= v F[_(_, n)]

where X is the original wave front integral. This generalization issues

from the fact that the equation (12) is satisfied by the same slope

function s if v is replaced by _. The ray and wave front patterns do

not change and are described by their original equations.

Rotation of the coordinate system offers a different method of

extending solutions. This time it is the eikonal equation (ii) which

furnishes the key for the proposed method. Its gist is to transplant

by rotation a solution given in a (_', _')-system into the (_, N)-system

which is linked by the transformation (i0) to the physical (x, y)-system.

It is clear that the functions v(_', N'), s(_', N'), X(_', N') will go
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into different functions v(_, N), s(_, N), X(_, _), so that indeed the

ray and wave front patterns in a velocity field different from the

original field are known. For brevity, let us write v(_', N') = v', etc.

From the foregoing, solutions to the eikonal equation

2

are already known for a great number of velocity fields v(_', N') which

satisfy the condition v' = 1 for _' = 0, N' = i. The same requirement

has to be met within the (_, N)-system, so that the appropriate

coordinate transformation will be written as

(56A)

with

o_ + B2 = i. (56B)

The rotation thus is carried out about the point (0, I), which preserves

its location; in precise terms, the transformation couples a translation

of the origin onto a rotation. The velocity goes into

v'[_ - _(n i), 1 + _ + _(q - I)] m v(_, q) (57)

while the left side of equation (55), being the squared length of a

gradient, must remain the squared length of the function's _ gradient

in the (_, _)-system, since a mere translation and rotation does not

alter the length unit. Hence, the significant-result is obtained that,

if the transformation (56) is carried out, the equation (55) preserves

its form:

_)e <_q_e i (58 )+ =v-_

that is, it is again an eikonal equation, where now v(_, _) is the

function (57). The ray field associated with equation (58) can be

obtained in the following way.

Suppose that the wave front integral associated with the velocity

field v' is known to be

X(_' ' X', _ ) _ = const.
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Since _ is constant on wave fronts, equation (55) can be set into the

form

2

_,d×') = E(×'). (59)

On applying the transformation (56) one obtains

2

(60)

where

x(_, _) m x'[u_ _(q - i), i + _ + u(_ - i)].

Equation (60) is another representation of the eikonal equation (58),

as the same process carries (55) into (58) and (59) into (60). The

transformed wave front integral therefore is

X(_, N) = const.

It follows that the wave fronts in the fields v' and v have the same

geometric shape but different position. The same must be true for their

orthogonal trajectories, the sound rays. This means that if the tra-

jectories in the field v' are given by f(_' ', _ ; C*) = 0, they will, in

the field v, obey the equation

f[_ - _(n " i), 1 + _ + _(n I), C*] : O. (6i)

C* will have to be related to the angle of departure in the usual manner.

It is seen from (57) and (61) that the simple rule applies: The

interdependence of a velocity and ray field is preserved if the independent

variables are subjected to the same transformation (56). The integration

constant C* must not be expressed in terms of 8o until after the trans-

formation has been carried through since the latter alters the angle of

departure.

For example, take v' = N' where the ray equation is

2

_' - C* _' + N' = i, where C* = 2 t_n Co'.

In the field v : I + _ + _ (N - i), where the velocity is constant on

inclined straight lines, the ray equation is
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C*[_ - _(_ - i)] = _2 + (N - i) e + 2[_ + _(N - I)].

If this equation is differentiated with respect to _, evaluation of the

result at _ = 0, N = i where dN/d_ = tan eo gives

C* = 2 _ + _ tan 9o
- _ tan 9o "

With the use of this expression the ray equation assumes the form

2 2

) _ _ - _ tan eo -i_ itan e¢ . + _ - --_- _ tan 90 J = c-os_ eo (c_ - tanu - _ tan 0o .... _ 9o) 2

The rays are circles whose centers are aligned on the _'-axis. The

latter's slope in the (_, q)-system is - _/_ = - tan _ where _ is the

angle through which the (_', N')-system is rotated into the (_, N)-

position.

Figure 8 shows the effect of a 45°-rotation on the hyperbolic field

of Figure 5.

SECTION VIII. ON THE FORMATION OF FOCAL POINTS

The ray equation always contains the angle of departure, eo, as

this is the parameter that singles a ray out of the family of all rays.

A prerequisite for the emergence of a focal point at any level, Yo, is

of course the existence of rays returning to that level. Their "landing"

distances, Xs, can be found from the ray equation f(x, y; 90) = 0 by

writing

f(Xs, Yo; 90) = O. (62)

For the source level, Yo = 0 by definition. If the quantity x s depends

on 9o in such a manner that it becomes stationary at some critical angle

eo = 80*, the rays will arrive densely packed near the poJut

Xf = x s (0o*), Yf = Yo

which is then called a focus. The focal point can be determined by

solving for x s and eo the equation (62) combined with the extremum

condition

dE s

---- = 0 (63)
dSo

whose left side follows from (62). Numerical methods must be employed

if the relations (62) and (63) are too involved for an analytical solution.
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Wave

Fronts

FIG. 8: HYPERBOLIC RAY FIELD; EXAMPLE FOR ROTATION METHOD
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By the acoustical refractive law, returning rays are bound up with

propagation velocities that increase with height at least in some portion

of the atmosphere. But this is by no means a condition that would auto-

matically result in the formation of a focal point. Positive velocity

gradients merely impose on the ray a deceleration in height gain and

might not succeed in turning it around completely• It can be shown that

in order for this to happen the velocity must become larger than it had

been at any lower level [i]. Even this is not sufficient for the

existence of a focal point. A prime example is furnished by the velocity

v = N which increases linearly with height and returns all rays to the

source level as long as 6o > 0. From equation (25) the dimensionless

landing distances along N = i are

_s = 2 tan 0o

and thus can never become stationary with increasing 8o.

Judging from the distribution v m i/_one might expect that a

focal point will appear if the velocity not only increases with height,

but does so at an increased rate. It can be shown in an example that

not even this is a sufficient condition. Take

v = eN " 1 (64)

The direct method (Section III) applies here. Since v depends on

alone,

%

2(N 1)
41 = e (s2 + i)

e_ - i
4s = _ $ eN i dN = _ $ arc sin

J_l e2(_ " i_

or

%

_s 2 + I

= $ sin (_S - _)-

At the sound source ([ = O, N = i)

~ I= sin2 42 = _ •

41
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According to Section III, the slope s will become indeterminate at the

source, if the relationship of _I and _e is taken as the relationship

of _l and _e in general. But

sin _/2 = sin _ $ arc sin i __
4s 2 + i_

j !

s2
= _ sin _$

I
COS _ .

Since the square roots are taken absolute, q_= _+ s, depending on

whether s is positive or negative. Thus

sin 42 + s sin _ - cos t

4s e + I

and the desired value for s follows from

2(_ - 1)
e (s sin _ - cos 6)2 = i.

The square root of the left side must be taken as (-i) (as this is

required for _ = O, N = i), so that the expression

cos _ - e I " N d__ (65)
S ---- --

sin _ d_

gives the slope of the sound curves in the velocity field (64). Their

equation follows as

e_ - i = tan eo sin _ + cos _ = cos (_ - Co)
cos 8o

The landing distance of rays returning to the source horizontal (_ = I)

is subject to the condition

cos (_s - eo) = cos eo

and is therefore

_s = 280.



45

Although the velocity increase with height is much more pronounced in the

field v = e_ - i than in the field v = _, it still does not produce a

focal point, the only effect being that the rays are returning at shorter

distances. The stretch covered on N = i by incoming rays ends at _s = _'

whereas it extends to infinity with v = N. Thus, the energy return at

any given spot _s _ _ on the source horizontal will be larger than in the

case of circular rays. There is no dangerous concentration of energy,

however.

It seems that a general condition that would insure the existence

of a focal point cannot be given either in analytic terms or in form of

a rule. Every case of a velocity distribution, as things stand today,

must be discussed on its own merits. It is, however, clear that focus

formation is precluded if the ray family does not contain members that

cross each other in the realm of physical significance. Without this

the motion of the "landing" points cannot become stationary. Unfortunately,

this again is not a sufficient condition, as examples have shown. Perhaps

something can be achieved if ray curvatures are considered in addition

to slopes; however, no effort in this direction has been made so far.

SECTION IX. CONCLUDING REMARKS

On the preceedinB pages the tools have been readied for assembling

an unlimited array of velocity-ray relationships in two-dimensional

sound propagation. It will, however, not often occur that the actual

meteorological state around the sound source will be sufficiently close

to what is required for a smooth theoretical solution. To remedy this

situation in the conventional case v = N, the atmosphere is divided into

several horizontal layers of constant velocity gradient, and the sound

propagation is determined within each layer separately. This would

suggest a similar procedure in the general case v = v(_, N), where the

layers will not as a rule be horizontal and the boundary between layers

will call for attention. Further investigations are needed to arrive

at solutions in multi-layered atmospheres if the propagation velocity

cannot very well be approximated by a piecewise linear expression in

height alone.
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